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ABSTRACT 
 
Despite decades of neuroimaging research, how white matter develops along the length of major 
tracts in humans remains unknown. Here, we identify fundamental patterns of white matter 
maturation by examining developmental variation along major, long-range cortico-cortical tracts 
in youth ages 5-23 years using diffusion MRI from three large-scale, cross-sectional datasets 
(total N = 2,710). Across datasets, we delineate two replicable axes of human white matter 
development. First, we find a deep-to-superficial axis, in which superficial tract regions near the 
cortical surface exhibit greater age-related change than deep tract regions. Second, we 
demonstrate that the development of superficial tract regions aligns with the cortical hierarchy 
defined by the sensorimotor-association axis, with tract ends adjacent to sensorimotor cortices 
maturing earlier than those adjacent to association cortices. These results reveal developmental 
variation along tracts that conventional tract-average analyses have previously obscured, 
challenging the implicit assumption that white matter tracts mature uniformly along their length. 
Such developmental variation along tracts may have functional implications, including 
mitigating ephaptic coupling in densely packed deep tract regions and tuning neural synchrony 
through hierarchical development in superficial tract regions – ultimately refining neural 
transmission in youth. 
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INTRODUCTION 
White matter (WM) tracts undergo protracted refinement in youth, supporting 

communication between spatially distributed cortical regions1,2. In cortical gray matter, 
convergent lines of evidence have shown that development progresses heterochronously along 
the cortical hierarchy defined by the sensorimotor-association (S-A) axis, with unimodal 
sensorimotor regions developing earlier and transmodal association regions maturing later3–7. 
However, how development varies along white matter tracts – which may provide insight into 
how different positions along a tract may serve distinct functional roles – has yet to be 
systematically characterized. Furthermore, despite the intrinsic relationship between white and 
gray matter, they are typically studied separately. As a result, little is known about how major 
WM tracts develop in relation to the cortical regions they connect. Here, we sought to define 
spatial patterns of development in cortico-cortical WM tracts in youth. 

Despite decades of research, there is limited understanding of how WM develops along 
the length of individual tracts. Foundational studies using diffusion MRI established that 
widespread decreases in mean diffusivity and increases in fractional anisotropy occur in 
childhood and adolescence2,8–10, corresponding to increases in myelination, refinements in axonal 
caliber, and changes in glia11. Notably, nearly all prior work of in vivo WM development has 
averaged measures of microstructure along the entire tract, a methodological approach that 
implicitly assumes that WM develops synchronously along its length. This approach precludes 
more spatially precise investigations of developmental variation along tracts and neglects 
important nuances suggested by animal and post-mortem studies. In animal models, myelination 
has been shown to vary along axons, which can profoundly impact the velocity and synchrony of 
neural transmission12,13. Infant post-mortem studies examining myelin at discrete WM sites have 
described broad regional patterns of myelination – e.g., from posterior-to-anterior, 
inferior-to-superior, and central-to-peripheral WM regions14,15. Such regional variation in myelin 
content and formation warrants investigating how WM development varies continuously along 
the length of major tracts and identifying the organizing principles underlying this variation. 

Examining developmental variation along WM tracts has the potential to provide insights 
into how tracts mature in relation to the cortices they connect. Understanding this relationship is 
particularly important given that the primary role of WM tracts is to facilitate communication 
between distant cortical regions16. Long-range association tracts often connect regions that span 
the S-A axis, a pattern of cortical organization that aligns with hierarchies of cortical anatomy, 
function, and evolutionary expansion that spans from sensorimotor (lowest ranks) to association 
(highest ranks) cortices3. For example, the inferior fronto-occipital fasciculus connects 
lower-order visual regions, which largely mature in childhood, to higher-order frontal association 
regions, which continue developing into early adulthood6. Given that cortical activity can lead to 
preferential myelination of axons17, hierarchical cortical development may dynamically interact 
with WM development. Thus, tracts connecting cortical regions at different positions along the 
S-A axis may exhibit divergent development near these differing endpoints. Given the growing 
evidence that sensorimotor cortical regions develop before association regions4,5,18 and the 
plausibility of divergent development along a single tract, prior reliance on whole-tract averages 
may have masked important patterns of differential development linked to cortical endpoints. 

Findings from the few small-scale studies that quantified tissue properties along the 
length of tracts during youth19–21 have suggested the possibility of heterochronous development 
along tracts. While these studies identified differences in microstructural properties and 
developmental timing along several tracts, they did not explore the development of tracts in 
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relation to their cortical endpoints. Furthermore, the small samples evaluated in prior work may 
limit generalizability. Addressing gaps in understanding WM development requires studying 
along tract development in the context of the cortical hierarchy in large samples.  

Here, we aimed to delineate fundamental patterns of WM development by examining 
developmental variation along major cortico-cortical tracts in youth. We hypothesized that 
development would not be uniform along a WM tract, but would vary in part based on the 
position of the tract’s endpoints along the cortical hierarchy. To ensure rigor and assess 
replicability, we analyzed three independently-acquired, large-scale neuroimaging datasets (total 
N = 2,710) of youth ages 5-23 years old. Our findings challenge the assumption of synchronous 
development along WM tracts implied by conventional tract-average analyses. As described 
below, we demonstrate that WM development aligns with two distinct axes. First, WM develops 
along a deep-to-superficial axis within individual, long-range WM tracts, with superficial tract 
regions adjacent to the cortex exhibiting greater age-related change compared to deep tract 
regions. Second, development in superficial tract regions aligns with the cortical hierarchy 
defined by the S-A axis, such that tract ends adjacent to lower-order sensorimotor cortices 
mature earlier than those adjacent to higher-order association cortices.  
 
RESULTS 

We characterized white matter (WM) development in youth using diffusion MRI from 
three large-scale, cross-sectional datasets (total N = 2,710). We used the Philadelphia 
Neurodevelopmental Cohort (PNC; n = 1,101; ages 8-23 years) as the discovery dataset and 
Human Connectome Project: Development (HCP-D; n = 568; ages 8-22 years) and Healthy 
Brain Network (HBN; n = 1,041; ages 5-22 years) as replication datasets. First, we investigated 
variability in developmental effects of mean diffusivity at 100 equidistant nodes (numbered 
0-99), or spatial locations, along each cortico-cortical tract. Specifically, we quantified 
differences in developmental effects between deep tract regions (nodes 46-55) and superficial 
tract regions (nodes 5-9 and 90-94) after trimming the endmost nodes (0-4 and 95-99) to mitigate 
partial volume effects. Of note, “superficial” here does not refer to U-fibers, but rather to regions 
of long-range WM tracts that are closer to the cortex. Second, we studied how developmental 
patterns of superficial tract regions vary according to their respective cortical endpoints. To do 
so, we mapped tracts to their cortical endpoints by developing a novel workflow that combines 
multiple toolkits. Third, we tested whether the development of superficial tract regions varies 
along the cortical hierarchy defined by the sensorimotor-association (S-A) axis by mapping S-A 
ranks of cortical endpoints to superficial tract regions.  
 
White matter development occurs along a deep-to-superficial axis along tracts 

We first characterized spatial patterns of developmental change in mean diffusivity along 
each tract. We focused on mean diffusivity for three reasons. First, mean diffusivity is more 
sensitive to developmental changes and more robust to the impact of in-scanner motion than 
other commonly used measures, including fractional anisotropy8,22,23. Second, it can be calculated 
for both single-shell (PNC) and multi-shell (HCP-D, HBN) acquisitions. Third, mean diffusivity 
is thought to be less sensitive to partial volume effects in WM adjacent to cortex than fractional 
anisotropy24,25. To model developmental changes in mean diffusivity along each tract, we fit 
generalized additive models at each of the 100 nodes along each tract. This model included age 
as a smooth term as well as sex and head motion as linear covariates. We quantified the 
magnitude of age-related change in mean diffusivity for each node by computing the absolute 
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change in adjusted R2 (ΔR2
adj) between a full model and a reduced model without the age term. 

Across tracts, mean diffusivity significantly decreased over development in the age window 
studied at nearly all nodes (QFDR < 0.05 in 95% of nodes in PNC; >99% in HCP-D; 98% of nodes 
in HBN).  

We first evaluated development along callosal tracts (Figure 1). Deep WM exhibited the 
smallest age-related changes; age effects continuously increased in magnitude toward the 
superficial regions of each tract. The differences were often quite marked. For example, in the 
motor segment of the corpus callosum (callosum motor), age explained less than 5% of the 
variance in mean diffusivity of deep tract regions, but explained approximately 38% of variance 
in superficial tract regions. To statistically evaluate differences in age effects between deep and 
superficial tract regions, we adapted a recently-introduced permutation-based enrichment test 
that accounts for autocorrelated data structures (see Methods for details). Across datasets, we 
found that age effects were significantly enriched in superficial as compared to deep tract regions 
in all callosal tracts in all datasets (QFDR < 0.05), with the exception of callosum occipital in 
HCP-D.  

We next examined age effects of mean diffusivity in association tracts and found highly 
convergent results (Figure 2). Similar to callosal tracts, we found that across datasets, most 
association tracts exhibited the same deep-to-superficial gradient of age effects. However, there 
were two exceptions: the inferior longitudinal fasciculus and uncinate fasciculus did not exhibit a 
significant deep-to-superficial patterning as determined by enrichment testing. Nonetheless, 13 
out of 15 callosal and bilateral association tracts exhibited significant differences between deep 
and superficial tract regions in at least two of the three datasets. Furthermore, the magnitude of 
these age effects were highly correlated across datasets (PNC–HCP-D: r = 0.86, pperm < 0.0001; 
PNC–HBN: r = 0.72, pperm < 0.0001; HCP-D–HBN: r = 0.66, pperm < 0.0001; Supplementary 
Figure 1). 

To evaluate whether larger age effects in superficial regions of a tract could result from 
increased variability at the tract ends – providing more variance for age to explain – we 
compared the coefficient of variation (CV) of mean diffusivity between deep and superficial tract 
regions (Supplementary Table 1). The CV at superficial tract regions for most tracts appeared 
to be lower than that in deep tract regions, suggesting that greater magnitudes of superficial age 
effects were not driven by increased variability in the measure under study. Furthermore, to 
investigate whether a deep-to-superficial pattern of development generalizes beyond 
cortico-cortical WM tracts, we additionally evaluated the corticospinal tract (Supplementary 
Figure 2). We compared superficial tract regions (adjacent to the motor cortex) to deep tract 
regions (near the brainstem). As in cortico-cortical tracts, we found that superficial tract regions 
were significantly enriched for age effects compared to deep WM, suggesting that this pattern 
does not depend on tract geometry or anatomical orientation. Together, these results describe a 
highly replicable deep-to-superficial axis of WM development that has previously been obscured 
by typical methods that average across the length of WM tracts.  
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Figure 1. White matter development occurs along a deep-to-superficial axis in callosal tracts. The 
magnitude of the mean diffusivity age effect varies continuously along each of eight tracts that comprise 
the corpus callosum. Each callosal tract is shown in a glass brain of an exemplar participant, with that 
participant’s streamlines colored by the average magnitude of the age effect across datasets. Below each 
glass brain, we display the magnitude of the age effect at 100 equidistant nodes that span the length of 
each tract. Data points are colored by dataset: the Philadelphia Neurodevelopmental Cohort (PNC; 
magenta), Human Connectome Project: Development (HCP-D; teal), and Healthy Brain Network (HBN; 
coral). Nodes without a significant age association are colored in gray (QFDR > 0.05). The black 
LOESS-smoothed line shows the overall trend for each tract, averaged across datasets. To the right of 
each age effect plot, average age effects for superficial (filled circle) and deep (open circle) tract regions 
are shown for each dataset. Significant differences between age effects of superficial and deep tract 
regions were assessed using a network enrichment significance test. Stars denote significance levels 
following FDR correction.  
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Figure 2. White matter development follows a deep-to-superficial axis in association 
tracts. Magnitudes of the mean diffusivity age effect along bilateral association tracts vary along a 
deep-to-superficial axis in PNC, HCP-D, and HBN. Each tract from an exemplar participant is colored by 
the average magnitude of the mean diffusivity age effect across datasets, depicting the spatial distribution 
of age effects. Below each glass brain, we display the magnitude of the age effect at 100 equidistant 
points along the tract’s length. Colors indicate dataset; nodes that do not display significant age effects are 
shown in gray (QFDR > 0.05). Open and closed diamond shapes represent left and right hemisphere tracts, 
respectively. The black LOESS-smoothed line shows the trend for each tract averaged across datasets and 
hemispheres. To the right of each age effect plot, average age effects for bilateral superficial (filled circle) 
and deep (open circle) tract regions are displayed for each dataset. Statistical comparisons between age 
effects of superficial and deep tract regions were assessed using a network enrichment significance test, 
with significance indicated by stars following FDR correction.  
 

We further examined developmental variation along tracts using fractional anisotropy, a 
microstructural measure related to WM coherence and axonal organization. Across tracts, 
fractional anisotropy significantly increased over development (QFDR < 0.05 in 68% of nodes in 
PNC; 44% in HCP-D; 81% of nodes in HBN; 64% of nodes on average across datasets), but 
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exhibited less widespread developmental change compared to mean diffusivity (mean diffusivity 
exhibited QFDR < 0.05 in 97% of nodes across datasets). The magnitudes of age effects were 
smaller for fractional anisotropy than for mean diffusivity (Supplementary Figure 3), with a 
deep-to-superficial pattern visible only in select tracts.  
 
Development of superficial tract regions varies by cortical endpoint similarity  

The above results emphasize that superficial tract regions exhibited greater magnitudes of 
age effects than deep tract regions. However, age effects in superficial tract regions varied both 
within and across tracts. To investigate this variance, we next evaluated whether variation in age 
effects in superficial WM was associated with their nearest cortical endpoints. We hypothesized 
that superficial tract regions would show similar developmental patterns in a tract with similar 
endpoints, such as homotopic cortices – e.g., corresponding cortical regions in opposite 
hemispheres. In contrast, we hypothesized that in a tract that linked different cortical endpoints 
(e.g. heterotopic endpoints), superficial tract regions would display diverging developmental 
patterns. To test this hypothesis, we developed a novel workflow that allowed us to create a 
tract-to-cortex probability map for each tract in each dataset. This workflow overcomes technical 
obstacles by combining toolkits (e.g., pyAFQ, MRTrix, FSL, Freesurfer, Nilearn, sMRIPrep, and 
Connectome Workbench), thereby allowing us to relate WM development to each tract’s cortical 
endpoints. We parcellated the endpoint probability maps using the HCP-MMP atlas.  

We first compared the magnitude of age effects for the most superficial nodes in one tract 
with homotopic endpoints: the motor segment of the corpus callosum (Figure 3; i.e., callosum 
motor). This tract connects homotopic right and left motor cortices. Across all three datasets, we 
found that superficial regions in this tract exhibited highly similar age effect magnitudes for the 
WM adjacent to each endpoint (Figure 3a-c). Enrichment testing confirmed that the right and 
left superficial tract regions’ age effects did not significantly differ from each other (Figure 
3d-f). We next compared the nonlinear GAM-derived developmental fits of the superficial nodes 
for each end of the callosum motor. Superficial tract regions adjacent to the right and left motor 
cortices showed similar patterns of age-related change for all datasets (Figure 3g-i). Right and 
left motor WM also displayed similar windows of significant developmental change, slowing in 
developmental change at nearly the same time. 

We next investigated developmental patterns at the end of a tract connecting heterotopic 
endpoints, the inferior fronto-occipital fasciculus (Figure 4; IFOF). This tract connects frontal 
and occipital cortices. Notably, superficial tract regions at these two ends of the IFOF showed 
dissimilar age effects (Figure 4a-c). Specifically, age effects of frontal WM significantly differed 
from that of occipital WM in the PNC and HCP-D but not in HBN (Figure 4d-f). In PNC and 
HCP-D, the magnitude of the age effect was greater in bilateral frontal WM than bilateral 
occipital WM. When comparing the developmental fits of superficial tract regions in the IFOF, 
we found that mean diffusivity in occipital WM showed a developmental plateau in 
mid-adolescence (Figure 4g-i). However, mean diffusivity in frontal WM did not slow in 
developmental change by the maximum age studied in all datasets, suggesting that it continued 
to significantly decrease beyond the age window. Interestingly, the cortical regions comprising 
the frontal endpoint of IFOF sit close to the apex of the cortical hierarchy defined by the 
sensorimotor-association (S-A) axis. In contrast, regions in the occipital IFOF endpoints have a 
low average S-A rank. These results suggest that the development of superficial portions of tracts 
may align with the position of each tract’s endpoint on the cortical hierarchy.  
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Figure 3. Superficial tract regions in the motor segment of the corpus callosum connecting 
homotopic cortical endpoints exhibit similar developmental patterns. Developmental measures of 
superficial tract regions in PNC (first column), HCP-D (second column), and HBN (third column) show 
similar patterns for each endpoint of the callosum motor. (a-c) Magnitudes of the mean diffusivity age 
effect for the superficial tract regions adjacent to the right and left hemisphere cortical endpoints of the 
callosum motor are displayed on the cortical surface. (d-f) Magnitudes of the age effect at the right (red) 
and left (blue) motor endpoints do not significantly differ in all three datasets. Statistical comparisons 
between right and left white matter age effects were assessed using a network enrichment significance 
test. (g-h) Developmental patterns for superficial tract regions are overlaid on participant-level mean 
diffusivity values. In all three datasets, superficial tract regions adjacent to right and left motor cortices 
exhibit highly similar patterns. Colored bars indicate windows of significant developmental change in 
mean diffusivity, with higher transparency corresponding to slower rates of change.   
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Figure 4. Superficial tract regions in inferior fronto-occipital fasciculus connecting heterotopic 
cortical endpoints exhibit distinct developmental patterns. Superficial tract regions in the inferior 
fronto-occipital fasciculus (IFOF) exhibit distinct developmental patterns between the frontal and 
occipital endpoints, which respectively have high and low sensorimotor-association (S-A) ranks on 
average. (a-c) The magnitudes of the age effect for frontal and occipital white matter of IFOF are shown 
on the cortical surface. (d-f) The age effect, averaged across hemispheres, is significantly larger in frontal 
(red) compared to occipital (blue) white matter in PNC and HCP-D. Statistical comparisons between 
frontal and occipital white matter age effects were assessed using a network enrichment significance test. 
(g-h) Developmental patterns for frontal and occipital white matter are overlaid on participant-level mean 
diffusivity values. Colored bars depict windows of significant developmental change, with higher 
transparency indicating slower rates of change. In all datasets, occipital white matter matures in 
mid-adolescence whereas frontal white matter continues to significantly decrease in mean diffusivity 
beyond the studied age window.  
 
Development of superficial tract regions aligns with the sensorimotor-association axis 
 Contrary to the notion that tracts develop synchronously along their entire length, the 
above findings reveal that within a single tract, superficial tract regions adjacent to heterotopic 
cortical endpoints may diverge in maturational timing. In the IFOF, such divergence appeared to 
be consistent with the cortical hierarchy. We hypothesized that the relative positions of each 
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tract’s cortical endpoints along the cortical hierarchy would explain the observed convergence or 
divergence in their developmental patterns. Thus, we expanded this analysis to all tracts and 
interrogated whether the age of maturation for superficial tract regions aligned with each 
endpoint’s position on the S-A axis. Given that cortical maturation has been shown to develop 
along the S-A axis, we specifically hypothesized that microstructure in superficial tract regions 
would exhibit analogous developmental patterns, with unimodal, lower-order regions maturing 
earlier and transmodal, higher-order regions maturing later.  

To evaluate this hypothesis, we computed the age of maturation as the earliest age at 
which the rate of developmental change was no longer statistically different than zero. We then 
averaged the ages of maturation for the most superficial nodes for each tract. We computed the 
correlation between the ages of maturation at each endpoint with the mean S-A axis rank of that 
endpoint’s constituent cortical regions. We found that in two of the three datasets, ages of 
maturation for each endpoint were largely explained by each endpoint’s mean S-A axis rank 
(Supplementary Figure 4a-d; PNC: r = 0.82, pspin < 0.0001; HCP-D: r = 0.87, pspin < 0.0001; 
HBN: r = 0.12, pspin = N.S.). When averaged across datasets, a significant effect remained (r = 
0.68, pspin < 0.0001). Furthermore, comparing the age of maturation and the magnitude of the 
mean diffusivity age effect revealed a moderate correlation, suggesting that while these measures 
capture overlapping aspects of development, they also provide distinct developmental 
information (Supplementary Figure 5a-c; PNC: r = 0.57, pperm < 0.0001; HCP-D: r = 0.43, pperm 
< 0.0001; HBN: r = 0.44, pperm < 0.0001).  

It should be noted that the cortical endpoints of many tracts did not mature by the 
maximum studied age in each dataset, resulting in a ceiling effect as these endpoints were 
assigned the maximum age studied in each dataset. To evaluate the potential influence of ceiling 
effects, we included only the endpoints that reached maturation within the age window of our 
samples in a sensitivity analysis. This analysis generated consistent results: the age of maturation 
was associated with S-A rank in PNC and HCP-D (Supplementary Figure 4e-h; PNC: r = 0.73, 
pspin < 0.0001; HCP-D: r = 0.81, pspin = 0.009; HBN: r = 0.25, pspin = N.S.; averaged across 
datasets: r = 0.7, pspin < 0.0001). Additionally, to determine whether still-developing endpoints 
had higher S-A ranks than endpoints that were no longer significantly changing in mean 
diffusivity, we conducted a two-sample, one-tailed spin-based t-test. In the PNC, late-developing 
endpoints had significantly higher S-A ranks than endpoints that matured in the sample age range 
(pspin < 0.0001). This finding was replicated in HCP-D (pspin < 0.0001) but not in HBN (pspin = 
N.S). When averaged across datasets, late-developing endpoints still showed significantly higher 
S-A ranks than matured endpoints (pspin = 0.048), suggesting a consistent effect despite variation 
in individual datasets. 

To further explore hierarchical development between superficial regions within each 
tract, we examined whether tracts that spanned the cortical hierarchy exhibited greater 
differences in their age of maturation compared to tracts that connected similar regions in the 
cortical hierarchy. To do this, we compared differences in age of maturation (ΔAge) of tracts 
with large differences in S-A axis rank (ΔS-A rank) between a given tract’s endpoint to those 
with a small ΔS-A rank. Callosal tracts connecting similar cortical regions, such as callosum 
motor (Figure 5a) and several association tracts, including arcuate fasciculus and superior 
longitudinal fasciculus, displayed small differences in mean ΔS-A rank (generally < 60). 
Long-ranging tracts connecting high- to low-order regions included the IFOF (Figure 5b) and 
inferior longitudinal fasciculus and displayed a large ΔS-A rank (~200). This framework broadly 
revealed two groups of tracts: tracts connecting hierarchically similar regions with similar 
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maturational ages, and tracts spanning the hierarchy with discrepant ages of maturation (Figure 
5c-f). For example, all callosal tracts and several association tracts had highly similar ages of 
maturation (i.e., small ΔAge). In contrast, bilateral IFOF and inferior longitudinal fasciculus 
exhibited a large discrepancy in ages of maturation between their endpoints (i.e., large ΔAge). A 
one-tailed, spin-based t-test revealed that tracts with larger ΔS-A rank had greater ΔAge between 
endpoints across all datasets (Figure 5c-f; PNC: pspin = 0.0004; HCP-D: pspin = 0.0003; HBN: pspin 

= 0.0002; averaged across datasets: pspin = 0.0001). These findings underscore that the superficial 
regions of tracts that connect similar regions along the cortical hierarchy mature at a similar age. 
In contrast, superficial regions of tracts that traverse the cortical hierarchy have discordant ages 
of maturation. 
 

 
Figure 5. Cortical endpoints at opposite ends of the cortical hierarchy have discrepant ages of 
maturation. (a) Callosum motor terminates on homotopic motor regions, resulting in a small mean S-A 
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rank difference of 52. (b) The inferior fronto-occipital fasciculus is a long-range association tract that 
connects frontal regions with high sensorimotor-association (S-A) axis ranks to occipital regions with low 
S-A ranks, resulting in a large mean S-A rank difference (>200) between its endpoints in each 
hemisphere. (c-e) The relationship between the difference in age of maturation (ΔAge) and the difference 
in mean S-A axis rank (ΔS-A rank) between endpoints is displayed for (c) the PNC, (d) HCP-D, (e) HBN, 
and (f) across datasets. Each data point represents a unique white matter tract, colored by tract type 
(association tracts in light pink, callosal tracts in dark pink). Tracts connecting regions with small ΔS-A 
rank—including all callosal tracts and several association tracts such as the arcuate—exhibit small ΔAge. 
In contrast, bilateral inferior fronto-occipital and inferior longitudinal fasciculi, which connect regions 
with large ΔS-A rank, exhibit large ΔAge between their endpoints. In all datasets, spin-based permutation 
tests confirmed that tracts with large differences in S-A rank have significantly greater ΔAge between 
their endpoints compared to tracts with small differences. Horizontal lines indicate the mean ΔAge for the 
two groups.  
 

To summarize broad developmental patterns of superficial tract regions in the context of 
the cortical hierarchy, we extended our within-tract analyses to study developmental variation 
across tracts. For each dataset, we aggregated the ages of maturation for superficial tract regions 
across all tracts and assigned the average age of maturation to the nearest cortical endpoint. This 
process yielded an average age of maturation map across all superficial tract regions, where each 
HCP-MMP region that had a tract termination was assigned an average age of maturation. 
Endpoints that matured beyond the maximum age studied in each dataset were initially not 
included. We found that the age of maturation for each HCP-MMP region with a matured tract 
termination significantly correlated with the S-A axis in each dataset and also across datasets 
(Figure 6a-d; PNC: r = 0.62, pspin = 0.0001; HCP-D: r = 0.48, pspin < 0.0001; HBN: r = 0.42, pspin 
= 0.0001; averaged across datasets: r = 0.58, pspin < 0.0001). As prior, to determine whether late 
developing endpoints had higher S-A ranks than endpoints exhibiting evidence of maturation, we 
conducted a two-sample, one-tailed t-test with a spin test. In the PNC, still-developing endpoints 
had significantly higher S-A ranks than mature endpoints (pspin < 0.0001). This finding was 
replicated in HCP-D (pspin < 0.0001) but not in HBN (pspin = 0.09). Additional analyses that 
included all endpoints (regardless of when they matured) found that age of maturation was 
significantly associated with S-A axis rank in PNC and HCP-D (Supplementary Figure 6; 
PNC: r = 0.71, pspin < 0.0001; HCP-D: r = 0.75, pspin < 0.0001; HBN: r = 0.2, pspin = 0.02; 
averaged across datasets: r = 0.57, pspin < 0.0001). Taken together, these results demonstrate that 
superficial tract regions develop hierarchically along the S-A axis. 
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Figure 6. Superficial tract regions develop hierarchically along the sensorimotor-association axis. 
Parcellated cortical maps were created by averaging ages of maturation across superficial tract regions 
and assigning the average value to each HCP-MMP region that had a tract termination for each dataset. 
(a-c) Age of maturation is associated with S-A axis rank in each dataset; regions with older ages of 
maturation rank higher on the S-A axis in all three datasets: (a) PNC (r = 0.62, pspin = 0.0001), (b) HCP-D 
(r = 0.48, pspin < 0.0001), and (c) HBN (r = 0.42, pspin = 0.0001), as well as (d) across all datasets (r = 
0.58, pspin < 0.0001). Statistical significance of correlations was assessed using region-based spin tests. 
This analysis excluded superficial tract regions that matured later than the maximum age studied in each 
dataset; see Supplementary Figure 6 for similar results that include these regions. (e) Dataset-specific 
maps were then averaged to produce a cross-dataset map. White represents HCP-MMP regions without a 
tract termination.  
 
 
DISCUSSION 

We identified two major axes of human white matter (WM) development. First, by 
examining developmental variation along tracts, we delineated a robust and highly replicable 
deep-to-superficial axis of WM development, characterized by greater age-related change in 
superficial compared to deep tract regions. This pattern has not been systematically quantified 
along major WM tracts with in vivo human neuroimaging, as prior studies have focused on 
discrete WM sites14,15 or whole-tract averages2,8,9,26. In addition to identifying variation in WM 
development along the full length of tracts, we studied maturational variability between each 
tract’s cortical endpoints. Specifically, to study how tracts develop in relation to the cortical 
regions they connect, we created a novel methodological workflow to map tracts to their cortical 
endpoints. This advance allowed us to demonstrate that the maturation of superficial tract regions 
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varies by cortical endpoint similarity. Superficial regions in tracts connecting similar cortical 
endpoints followed similar developmental patterns whereas the development of endpoints in 
tracts that spanned the hierarchy diverged. Specifically, we showed that the maturation of 
superficial tract regions was heterochronous and varied along the cortical hierarchy as defined by 
the sensorimotor-association (S-A) axis3. This work reveals that the spatial and temporal 
patterning of WM development occurs along two axes: a deep-to-superficial axis and the S-A 
axis. As discussed below, these co-evolving developmental programs pair early maturation in 
deep tract regions that may be crucial for signaling fidelity with hierarchical maturation of 
superficial tract regions that may allow for protracted activity-dependent refinements in youth. 

Across nearly all tracts and datasets, we found larger developmental effects in superficial 
as compared to deep tract regions. This discrepancy suggests that deeper WM regions may be 
relatively further along in their maturational course compared to superficial tract regions within 
the studied age range. Such spatial variation in WM maturation has been previously reported in 
both animal and human studies. In rodents, myelin basic protein first stains deeper WM 
structures near the brainstem during the neonatal stage before extending outward and rostrally 
toward the cortex during the juvenile period27. Post-mortem studies in infants have described 
earlier myelination of deep WM structures (e.g., the posterior and anterior limbs of the internal 
capsule and body, splenium, and rostrum of the corpus callosum) compared to WM regions near 
the cortex such as the frontal and temporal poles14,15. Similarly, small-scale human neuroimaging 
studies in infancy and early childhood have provided results that align with studies in rodents, 
with diffusion signal in deep WM structures showing larger developmental change earlier than 
WM adjacent to cortex27–30. Notably, a recent along-tract neuroimaging study of infants found 
faster development of deep tract regions31. These findings from animal systems and early 
development in humans dovetail with our findings in childhood and adolescence, where deep 
WM showed relatively little change. Instead, associations with age were of greater magnitude in 
superficial tract regions – a pattern that was consistently observed across diverse tracts. Together, 
our findings and prior literature suggest that WM tract development is heterochronous: deeper 
WM tract regions undergo more developmental change earlier, while superficial tract regions 
continue to develop into childhood and adolescence. 

Why might there be a prominent deep-to-superficial axis of WM development? We 
speculate that early development of deep tract regions may reflect earlier myelination that is 
essential for enabling fidelity in neural transmission. The first wave of myelination in the brain – 
marked by a rapid onset of dramatic myelin changes32 – begins around birth and continues 
through the first years of life. Myelin formation is thought to be driven by two processes: the 
intrinsic (activity-independent) and adaptive (activity-dependent) pathways32,33. In this initial 
wave of myelination, activity-independent processes may predominate32,34,35, with myelination 
driven by deep WM oligodendrocytes that have unique transcriptional programs36. For example, 
oligodendrocytes are several-fold denser in WM than in gray matter37, where their expansion 
occurs later in development33,38. Although research remains sparse on regional differences in 
oligodendrocyte transcriptional programs within WM, we speculate that dense populations of 
oligodendrocytes in deep WM may be genetically programmed for rapid early myelination.  

Activity-dependent mechanisms may also contribute to preferential myelination in deep 
WM during early development. Developmental studies in rodents and zebrafish have shown that 
neuronal activity leads to proliferation of oligodendrocyte progenitor cells (OPCs), 
differentiation of OPCs into oligodendrocytes, and preferential ensheathment of active axons17,39. 
While activity-dependent myelination is largely specific to active axons, increases in myelination 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2025. ; https://doi.org/10.1101/2025.03.19.644049doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?fpk5Z9
https://www.zotero.org/google-docs/?jNNB7g
https://www.zotero.org/google-docs/?PDxvnU
https://www.zotero.org/google-docs/?hSzYgg
https://www.zotero.org/google-docs/?GhGKC3
https://www.zotero.org/google-docs/?M8vkii
https://www.zotero.org/google-docs/?mheIaF
https://www.zotero.org/google-docs/?LCi2aR
https://www.zotero.org/google-docs/?BjKp3m
https://www.zotero.org/google-docs/?sTRjIr
https://www.zotero.org/google-docs/?ogacTz
https://www.zotero.org/google-docs/?2tiHvE
https://doi.org/10.1101/2025.03.19.644049
http://creativecommons.org/licenses/by/4.0/


 

also occur on nearby axons through a “bystander effect”39, possibly mediated by axonal signaling 
factors that locally regulate myelin17. Deep tract regions are characterized by a smaller tract 
radius with more densely packed axons than superficial tract regions that fan out to the cortex40. 
Because of this compact arrangement, axons in deep tract regions may be particularly susceptible 
to the bystander effect, leading to disproportionate increases in myelination during infancy and 
early childhood. We hypothesize that the greater developmental changes observed in superficial 
tract regions compared to deep tract regions may be due to the latter having undergone much of 
their myelination prior to the age ranges we studied here – as early as infancy31 – bringing them 
closer to a developmental plateau by childhood and adolescence. We note that while mean 
diffusivity is not a direct marker of myelin and reflects multiple microstructural properties, our 
developmental framework aligns with prior literature highlighting the role of myelination in WM 
development. Early preferential myelination of deep tract regions may serve to insulate axons 
from their neighbors and reduce unwanted ephaptic coupling (electrical crosstalk between 
adjacent axons)41, establishing the basis for successful transmission of action potentials between 
distant cortical regions. This first wave of myelination may set the stage for the subsequent 
developmental refinement at superficial tract regions in childhood through early adulthood that 
we observe here.  

This epoch of childhood, adolescence, and young adulthood coincides with increasingly 
complex cognitive, social, and emotional environmental inputs42, a protracted period of spatially 
heterogeneous refinements in intrinsic cortical activity5, and a second wave of rapid myelin 
changes32. These experiences, and associated neural remodeling, may contribute to the 
pronounced changes in superficial tract regions seen in our study. In juvenile rodents, after deep 
WM has heavily myelinated, neuronal activity preferentially drives activity‐dependent changes 
in OPCs in the deep layers of cortex and the adjacent white matter (i.e. superficial tract regions) 
compared to deep WM43. Consistent with this patterning, developmental change in superficial 
tract regions in childhood and adolescence may reflect continued remodeling in WM regions 
proximate to neuronal activity that may result from factors including novel life experiences42 and 
intrinsic cortical activity5. Marked changes in superficial tract regions may be driven in part by 
glutamate release and growth factor signaling in the cortex, which facilitate activity-dependent 
myelination32. Similarly, nearby neuronal cell bodies release OPC mitogens, promoting local 
OPC proliferation and subsequent myelination43. Furthermore, deep layers in the developing 
frontal cortex have been shown to myelinate earlier than superficial layers44; our results extend 
this deep-to-superficial maturational sequence to long-range WM tracts. Together, our findings 
and the existing literature suggest that the overall myelination of the brain may exhibit an 
“inside-out” developmental pattern that begins in deep WM, extends into superficial tract regions 
and deep cortical layers, and finally reaches the cortex’s outermost layers. Ultimately, our results 
are consistent with a model in which experience-driven cortical changes and ongoing cortical 
refinement dynamically interact with the remodeling of superficial tract regions near cortex in 
childhood and adolescence32.  
  In addition to this deep-to-superficial axis of development, we also found that age-related 
changes in superficial tract regions did not occur uniformly and instead varied between cortical 
endpoints within a single tract. For example, the inferior fronto-occipital fasciculus spans frontal 
to occipital regions; we observed an older age of maturation in frontal WM and earlier 
maturation in occipital WM. Furthermore, our findings not only showed differential 
developmental timing along individual tracts based on their cortical endpoints, but also that the 
development of superficial tract regions aligned with the cortical hierarchy as defined by the S-A 
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axis3. These results provide empirical evidence for a hypothesis first proposed more than a 
century ago by Flechsig45,46 and restated by Yakovlev and Lecours14 that myelination proceeds 
along a hierarchy of increasingly complex cortical functions15. The development of cortical 
myelination has been shown to align with the S-A cortical hierarchy6, with intracortical 
myelination exhibiting protracted developmental changes and later maturation in higher-order 
association regions6,7,47. Building on this existing literature on intracortical myelin, we show that 
superficial tract regions of long-range cortico-cortical tracts also develop heterochronously, 
progressing from sensorimotor regions to higher-order association regions. Given recent work 
showing that thalamic inputs influence cortical plasticity48,49 – and thereby intracortical 
myelination and the patterning of cortical activity – we propose a unifying model of development 
in which the thalamus influences cortical developmental timing, which in turn influences 
hierarchical myelination of superficial tract region development. Hierarchical refinements in 
myelin may help fine-tune the precise timing of action potentials13,50, which may facilitate 
synchronization of long-range information transmission51 and optimize cortical oscillations 
important for complex cognitive functions51,52. Together, our results challenge the notion that a 
tract matures uniformly along its length, revealing that along-tract development may be governed 
in part by the position of a tract’s endpoints on the cortical hierarchy.   

This study has several important limitations. First, we examined WM microstructure 
using advanced methods in diffusion modeling and tractography, which do not directly represent 
axons. Specifically, we studied mean diffusivity, which can be influenced by the presence of 
astrocytes, microglia, and oligodendrocytes as well as myelin23. Second, superficial tract regions 
that fan out to the cortex may introduce partial volume effects, though mean diffusivity is less 
susceptible to these effects and the use of multi-shell acquisition and anatomically-constrained 
tractography helps to further mitigate them. Third, we specifically examined the major 
association and commissural pathways, including one projection pathway (the corticospinal 
tract) as a sensitivity analysis. Thus, we did not examine short-range association U-shaped fibers. 
Fourth, our age window precludes us from examining development in infancy and early 
childhood, when dramatic WM changes occur. Similarly, the oldest subjects we include were age 
23, leading to ceiling effects in computing the age of maturation in superficial tract regions. Of 
note, many regions that were impacted by the age ceiling effect ranked relatively high on the S-A 
axis. Lastly, WM has been classically described to develop from posterior to anterior regions. 
However, the posterior-anterior axis is difficult to disambiguate from the hierarchical S-A axis as 
the two axes are highly correlated, especially without full coverage of the cortex. 

In this study, we replicably identified two distinct axes of development along major WM 
tracts in the human brain. First, we demonstrated that WM develops along a deep-to-superficial 
axis. Second, we demonstrated that development of superficial tract regions progresses 
hierarchically across tracts along the S-A axis. By examining development along the continuous 
length of tracts rather than relying on discrete WM regions or tract averages, our results provide 
a more complete account of WM development. This work argues against the implicit assumption 
of synchronous maturation along tracts – an assumption reinforced by methodological 
constraints of conventional tract-average analyses – and underscores the need to consider 
variable development along tracts when characterizing WM maturation. Understanding the 
biological mechanisms driving the heterochronous, hierarchical refinement of WM requires 
complementary work in animal models using causal experimental designs, where molecular 
processes influencing myelination can be directly examined. In humans, future work using MRI 
techniques that are sensitive to myelin, such as myelin water imaging, magnetization transfer 
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imaging, and T1 relaxometry53 in longitudinal samples would allow investigation into the 
developmental progression of myelin within individuals. Moving forward, the recognition that 
WM tracts are not uniform conduits between cortical regions but exhibit developmental 
variability along their length will deepen our understanding of how WM and cortical 
development are intertwined, ultimately advancing how we study brain maturation. 
 
 
METHODS 

 
Participants 

Analyses were conducted in three large-scale datasets. The Philadelphia 
Neurodevelopmental Cohort (PNC; n = 1,101) was the discovery dataset, while the Human 
Connectome Project: Development (HCP-D; n = 568) and Healthy Brain Network (HBN; n = 
1,041) served as replication datasets. Study procedures in each dataset were approved by the 
following Institutional Review Boards: the University of Pennsylvania and Children’s Hospital of 
Philadelphia Institutional Review Boards for the PNC, a central Institutional Review Board at 
Washington University in St. Louis for HCP-D, and the Chesapeake Institutional Review Board 
(now Advarra Inc.) for HBN. For all datasets, written informed consent was obtained for 
participants over 18 years of age. Informed consent was provided by legal guardians and 
informed assent was obtained from participants under 18 years of age. Demographic information 
for PNC, HCP-D, and HBN are reported in Table 1.  

The PNC54 is a community sample of children and adolescents from the greater 
Philadelphia area recruited for studying typical and atypical brain development. Minimal initial 
exclusion criteria were applied to the PNC and included medical conditions that could impact 
brain function55. Data from 1,101 participants ages 8-23 years from the PNC were included in the 
current study after additional exclusion criteria were applied; see “Sample Construction” for 
details. 

HCP-D56 is a sample of typically developing children and adolescents. To reflect the 
demographics of youth in the U.S., participants were recruited across four academic sites: 
University of Minnesota, Harvard University, Washington University in St. Louis, and University 
of California-Los Angeles. Information about initial inclusion and exclusion criteria is described 
previously, with participants excluded for medical conditions that could impact brain function56. 
After applying additional exclusion criteria to the Lifespan 2.0 release, we included demographic 
and neuroimaging data from 568 participants ages 8-22 years in the present study.  

Lastly, HBN57 is a self-referred sample of children and adolescents residing in the New 
York City area who participated in the study due to concerns about neuropsychiatric symptoms. 
Data collection took place at four sites: Staten Island Flagship Research Center, Rutgers 
University Brain Imaging Center, CitiGroup Cornell Brain Imaging Center, and CUNY 
Advanced Science Research Center. To capture phenotypic heterogeneity in youth 
psychopathology, HBN’s study exclusion was minimal.57 Data from 1,041 participants ages 5-22 
from data releases 1-9 in HBN were included in the current study after additional exclusion 
criteria were applied.  
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Dataset N Female 
(%) 

Age Range 
(Years; 

Mean± SD) 

Race (self-reported) 
Asian Black Other/Mixed White Unknown 

PNC 1101 580 
(52.7%) 

 
8-23 

(15.3±3.5)  
 

10 (0.9%) 465 
(42.2%) 

116 
(10.6%) 

510 
(46.3%) 

0 
(0%) 

HCP-D 568 303 
(53.3%) 

8-22 
(14.8±3.9) 44 (7.7%) 59 

(10.4%) 
82 

(14.4%) 
369 

(65.0%) 14 (2.5%) 

HBN 1041 384 
(36.9%) 

5-22 
(11.3±3.6) 29 (2.8%) 131 

(12.6%) 
282 

(27.1%) 
483 

(46.4%) 
116 

(11.1%) 

Table 1. Demographic characteristics for each dataset. Participants self-reported race and sex; intersex 
was not assessed. The racial category “Other/Mixed” includes individuals who identified with more than 
one race and those identifying as American Indian or Alaska Native, Hispanic or Latino, or Native 
Hawaiian or Other Pacific Islander. 
 
Sample construction 
 The following exclusion and quality assurance criteria were applied successively in the 
order described below and are summarized in Supplementary Figure 7. 
 
Variant acquisition exclusion 

For the present study, participants who had 3T MRI data with T1w images, field maps, 
and non-variant acquisitions58 of diffusion MRI scans with identical parameters within datasets 
were considered for inclusion. The following numbers of individuals had all required 
neuroimaging data: n = 1,368 in PNC, n = 640 in HCP-D, and n = 1,755 in HBN.  
 
Medical history exclusion 

While all datasets applied an initial medical exclusion (described above), health history 
exclusion criteria for the current study included presence of additional medical conditions 
affecting brain function or gross neurological abnormalities. In the PNC, n = 118 were excluded 
from the initial sample of n = 1, 368. In HCP-D, n = 7 participants were excluded from the initial 
sample of n = 640. No additional health history exclusion was applied to HBN.  
 
Imaging protocol quality assurance 

T1-weighted images that did not survive manual quality assurance were excluded in HBN 
and PNC. Participants were further excluded if their raw diffusion scans had missing gradient 
directions. For the PNC, three highly trained raters visually assessed images and provided 
manual ratings based on artifacts. N = 25 participants were excluded for T1w quality and n = 10 
participants were excluded for missing gradient directions in the PNC. No additional T1w 
exclusion was applied to HCP-D, as initial T1w quality assurance was completed by the team 
that collected the data, but n = 8 participants were excluded for missing gradient directions in 
HCP-D. The Swipes for Science web application59 was used to perform manual quality control in 
HBN.60 N = 72 participants were excluded for T1w quality in HBN. No participants in HBN 
were missing gradient directions.  
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dMRI quality assurance  
We utilized two measures for dMRI image quality assurance: in-scanner head motion and 

neighborhood correlation. We excluded participants if their diffusion scans exhibited high 
in-scanner head motion, as defined as mean framewise displacement > 1 mm. Furthermore, 
individuals with low neighborhood correlation were excluded. Neighborhood correlation 
measures the average pairwise spatial correlation between diffusion volumes that sample similar 
points in q-space61. Thus, lower values indicate worse data quality. Because neighborhood 
correlation values vary by diffusion scan acquisition parameters and noise level, the following 
dataset-specific exclusion thresholds were applied as in previous work: 0.9 in PNC, 0.6 in 
HCPD, and 0.7 in HBN49. In PNC, n = 70 participants did not meet the above criteria and were 
excluded. For HCP-D, n = 39 participants were excluded. In HBN, n = 373 individuals were 
excluded.  
  Because HBN is a higher noise and head motion dataset, we applied additional diffusion 
quality exclusion provided by HBN Preprocessed Open Diffusion Derivatives (HBN-POD2) 
quality control criteria62. This criteria excludes participants based on expert raters and a 
convolutional neural network model trained on imaging data and automated quality control 
metrics. An additional n = 208 participants failed HBN-POD2 quality control and were excluded. 
Spatial variability in data quality, such as greater susceptibility to motion-related artifacts or 
signal dropout in anterior compared to posterior regions, could potentially confound observed 
developmental patterns along tracts. 
 
Age exclusion 
      For each dataset, participants ages 5-23 years were included in our study. In the PNC, no 
additional participants were excluded since all participants were within the age window studied. 
Sparse sampling of ages < 8 years in this dataset (n = 14) may negatively impact accurate 
developmental modeling of HCP-D6,49. Thus, a young age exclusion of participants < 8 years old 
was additionally applied in HCP-D. In HBN, n = 1 participant was excluded for missing age 
data. A young age exclusion was not applied to HBN, as this dataset included a large sample (n > 
200) of participants under age 8. 
 
Failed reconstruction exclusion 
      Participants who failed FreeSurfer surface reconstruction or diffusion reconstruction were 
excluded, which typically results from a low-quality image. In PNC, n = 44 participants were 
excluded. In HCP-D, n = 4 participants were excluded. In HBN, n = 60 participants were 
excluded from analyses.  
   
MRI data acquisition 

PNC MRI data were collected on the same 3T Siemens TIM Trio Scanner and 32-channel 
head coil at the University of Pennsylvania for all participants. T1w images were acquired with a 
magnetization-prepared rapid acquisition gradient-echo (MPRAGE) sequence with the following 
parameters: TR = 1,810 ms, TE = 3.51 ms, TI = 1,100 ms, flip angle = 9 degrees, 160 slices, and 
voxel resolution = 0.94 × 0.94 × 1 mm. The single shell diffusion sequence consisted of b-value = 
1,000 s/mm2 in 64 directions with 7 interspersed scans with b = 0 s/mm2. All 71 volumes were 
acquired in the anterior-posterior direction and were split between two runs. Diffusion scans 
were acquired with the following parameters: TR = 8,100 ms, TE = 82 ms, and voxel resolution 
= 1.875 × 1.875 × 2 mm. Furthermore, a map of the main magnetic field was acquired with a 
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double-echo, gradient-recalled echo (GRE) sequence for susceptibility distortion correction of 
the diffusion data. The following parameters were used for field map acquisition: TR = 1,000 ms, 
TE = 2.69 and 5.27 ms, flip angle = 60 degrees, 44 slices, and voxel resolution = 3.75 × 3.75 × 4 
mm. 

HCP-D MRI data were collected at four sites on 3T Siemens Prisma scanners with 
32-channel head coils as described above. T1w images were acquired using a 3D multi-echo 
MPRAGE sequence with an in-plane acceleration factor of 2 and the following parameters: TR = 
2,500 ms, TE = 1.8, 3.6, 5.4, and 7.2 ms, TI = 1,000 ms, flip angle = 8 degrees, 208 slices, and 
voxel resolution = 0.8 mm isotropic. Multi-shell diffusion scans were acquired across four runs 
with b = 1,500 and 3,000 s/mm2 and a multiband factor of four. A total of 398 volumes were 
acquired, with 92-93 directions for each shell (370 directions total) and 28 b = 0 volumes. Two 
acquisitions with opposite phase encoding directions (anterior-posterior and posterior-anterior) 
were completed for each of the 185 unique directions. Diffusion scans used the following 
parameters: TR = 3,230 ms, TE = 89 ms, and voxel resolution = 1.5 mm isotropic. Reverse phase 
encoding EPI-based fieldmaps were acquired with the following parameters: TR = 8,000 ms, TE 
= 66 ms, flip angle = 90 degrees, 72 slices, and voxel resolution = 2.0 × 2.0 × 2.0 mm. 

HBN MRI data were acquired on 3T MRI scanners at three different sites. At each site, 
the following scanners were used: 3T Siemens Tim Trio scanner at Rutgers University Brain 
Imaging Center and 3T Siemens Prisma Scanners at CitiGroup Cornell Brain Imaging Center 
and the CUNY Advanced Science Research Center. Participants scanned at Staten Island 
Flagship Research Center were not included in this study due to the use of a 1.5T Siemens 
Avanto scanner. T1w images were acquired with an MPRAGE sequence with the following 
parameters: TR = 2,500 ms, TE = 3.15 ms, TI = 1,060 ms, flip angle = 8 degrees, 224 slices, and 
voxel resolution = 0.8 mm isotropic. Multi-shell diffusion scans were acquired with a multiband 
factor of three with b = 1,000 and 2,000 s/mm2 in the anterior-posterior phase encoding direction. 
For each shell, 64 directions were acquired for 128 directions total. One b = 0 volume was 
acquired. The following parameters were used for the diffusion acquisition: TR = 3,320 ms, TE = 
100.2 ms, and voxel resolution = 1.8 mm isotropic. A reverse phase encoding b = 0 was 
additionally acquired for use as an EPI-based field map in susceptibility distortion correction. 
 
Diffusion MRI preprocessing 

Preprocessing of diffusion scans, fieldmaps, and T1-weighted images, used QSIPrep63, an 
integrative pipeline for processing diffusion-weighted MRI data and uses the software tools 
described below. QSIPrep version 0.14.2 was used in PNC and HBN and version 0.16.1 in 
HCP-D, which included the following respective internal software versions: Nipype 1.6.1 and 
1.8.5, Nilearn 0.8.0 and 0.9.2, ANTs 2.3.1 and 2.4.0, and FSL 6.0.3 and 6.0.5. The same 
preprocessing steps were applied to all datasets as described below.  
 The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 
using N4BiasFieldCorrection64, and used as T1w-reference throughout the workflow. The 
T1w-reference was then skull-stripped using antsBrainExtraction (ANTs), using OASIS as the 
target template. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template 
version 2009c65 was performed through nonlinear registration with antsRegistration,66 using 
brain-extracted versions of both T1w volume and template. Brain tissue segmentation of 
cerebrospinal fluid, white-matter, and gray-matter was performed on the brain-extracted T1w 
using FAST (FSL)67. For PNC (2 runs) and HCP-D (4 runs), individual preprocessing steps were 
applied to each diffusion run and then subsequently concatenated; HBN data was all acquired in 
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a single run. Any images with a b-value < 100 s/mm² were treated as a b = 0 image. MP-PCA 
denoising as implemented in MRtrix3’s dwidenoise68 was applied with a 5-voxel window. After 
MP-PCA, Gibbs unringing was performed using MRtrix3’s mrdegibbs69. Following unringing, 
B1 field inhomogeneity was corrected using dwibiascorrect from MRtrix3 with the N4 
algorithm64. After B1 bias correction, the mean intensity of the diffusion-weighted series was 
adjusted such that the mean intensity of the b=0 images matched across separate runs. FSL’s 
eddy was used for head motion correction and Eddy current correction70. Eddy was configured 
with a q-space smoothing factor of 10, a total of 5 iterations, and 1000 voxels used to estimate 
hyperparameters. A linear first level model and a linear second level model were used to 
characterize Eddy current-related spatial distortion. q-space coordinates were forcefully assigned 
to shells. Field offset was attempted to be separated from subject movement. Shells were aligned 
post-eddy. Eddy’s outlier replacement was used71. Data were grouped by slice, only including 
values from slices determined to contain at least 250 intracerebral voxels. Groups deviating by 
more than 4 standard deviations from the prediction had their data replaced with imputed values. 
 Different approaches were used to correct for susceptibility artifacts as different versions 
of fieldmaps were acquired for PNC, HCP-D, and HBN. In the PNC, a B0 map using a 
phase-difference image and a magnitude image from the GRE fieldmap acquisition were created 
to assess susceptibility distortion correction. In HCP-D and HBN, reverse phase-encoding 
EPI-based fieldmaps were collected, resulting in pairs of images with distortions going in 
opposite directions. Here, b=0 reference images with reversed phase encoding directions were 
used along with an equal number of b=0 images extracted from the diffusion scans. From these 
pairs the susceptibility-induced off-resonance field was estimated72. The fieldmaps were 
ultimately incorporated into the Eddy current and head motion correction interpolation. Final 
interpolation for all datasets was performed using the Jacobian modulation method. As part of 
preprocessing, the diffusion data were resampled to AC-PC to be in alignment with the T1w 
image while retaining the input data resolution.  
  
Additional Structural MRI (sMRI) preprocessing 

In addition to QSIPrep’s anatomical pipeline, additional processing of the T1-weighted 
image was required to generate the white and pial surfaces required for tract-to-cortex mapping 
(described below). Specifically, T1w images from all datasets were additionally processed with 
sMRIPrep 0.7.1 (as part of fMRIPrep 20.2.373). T1w images underwent correction for intensity 
non-uniformity with N4BiasFieldCorrection from ANTs 2.3.364,66, skull-stripping with 
a Nipype 1.6.1 implementation of ANTs brain extraction workflow, and brain tissue 
segmentation with fast FSL 5.0.967. Cortical surfaces were then reconstructed using FreeSurfer 
6.0.174.  
 
Diffusion MRI reconstruction and tractography 

We used custom reconstruction workflows in QSIPrep 0.22.063 for dMRI reconstruction and 
tractography. Custom reconstruction json files may be found in the Github repository under 
“Code Availability”. This workflow first estimated fiber orientation distributions (FOD) of 
specific fiber populations using constrained spherical deconvolution (CSD). FODs served as the 
basis of biologically interpretable streamline tractography75,76. CSD overcomes limitations with 
crossing fibers and partial voluming present with diffusion tensor-based tractography (DTI)75,77,78. 
White matter tracts were reconstructed using multi-shell multi-tissue CSD tractography78 in 
HCP-D and HBN and single-shell 3-tissue CSD79 in PNC through the MRtrix3 software 
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package80. Streamlines were mapped to corresponding FOD lobes. To refine endpoints of dMRI 
streamlines, Hybrid Surface-Volume Segmentation (HSVS) provided tissue interface localization 
information to Anatomically-Constrained Tractography (ACT). This tractography approach 
constrains the propagation and termination of streamlines to biologically plausible regions based 
on tissue segmentation of an anatomical T1-weighted image81,82. However, because utilizing 
ACT in HBN led to the reconstruction failure of over 100 participants, we did not apply ACT in 
this dataset. We conducted sensitivity analyses for HBN with and without ACT to confirm that 
this dataset-specific methodological variation did not significantly impact downstream results 
(Supplementary Figure 8). We note that because HBN is a higher noise dataset, this led to 
generally greater challenges with tractography and tract segmentation (method described below) 
compared to PNC and HCP-D.  

 
Tractometry analysis  
 We defined canonical white matter tracts using Automated Fiber Quantification in Python 
(pyAFQ).83 This work used a development version of pyAFQ, based on v1.3.3 (commit hash 
fe30b287; the version can be found at https://github.com/tractometry/pyAFQ/tree/luo_wm_dev). 
As detailed in Kruper et al. 202484, pyAFQ segmented white matter tracts in subject space based 
on inclusion and exclusion regions of interest21,85. Tract segmentation was performed on MRtrix3 
tractography outputs from the QSIPrep reconstruction workflow described above. Of the 28 
tracts delineated by pyAFQ, we excluded bilateral tracts that did not have two distinct cortical 
endpoints, including the cingulum bundle and anterior thalamic radiation. We included 
corticospinal tract as an exemplar tract that does not have two distinct cortical endpoints for 
sensitivity analyses. 

To analyze microstructural properties along individual tracts, we computed tract profiles 
for each tract. First, we used the diffusion tensor imaging (DTI) model, implemented using 
DIPY, to estimate voxel-wise tensor-derived measures. Of note, the diffusion tensor model does 
not account for the non-gaussianity of water diffusion that occurs at higher b-values22,86. Because 
the multishell scans in HCP-D (b = 0, 1500, 3000) and HBN (b = 0, 1000, 2000) included high 
b-value shells, we excluded b-values > 1500. This value was chosen to maximize accuracy of 
DTI modeling while still leveraging multiple shells. Next, we examined mean diffusivity along 
each tract, which may be more sensitive to developmental change and exhibits more widespread 
changes than fractional anisotropy in this age window8,22,23. Mean diffusivity was calculated at 
100 equidistant nodes along each streamline in each tract. Tract profiles of mean diffusivity were 
calculated as the sum of each streamline’s mean diffusivity value at a given node, inversely 
weighted by the Mahalanobis distance of that node from the core location of the tract21. In 
addition to using anatomically-constrained tractography before tract segmentation (described 
above), the five end-most nodes on each end of each tract were excluded to minimize partial 
volume effects21. For sensitivity analyses, tract profiles were also computed using fractional 
anisotropy. 
 
Harmonization of tract profiles data  
 Multi-site tract profiles data underwent Correcting Covariance Batch Effects (CovBat) 
within each dataset where diffusion data were collected on multiple scanners (HCP-D and 
HBN)87–89. This scanner harmonization approach mitigates covariance-related batch effects while 
allowing us to account for non-linear age effects of interest. Specifically, we modeled age as a 
smooth term using a generalized additive model in both the initial mean-correction and the 
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covariance-correction stages, similar to ComBat-GAM90,91. Sex and in-scanner motion were 
included as additional linear covariates. CovBat was implemented using the CombatFamily 
package (version 0.2.1) in R.  
 
Developmental models 

To model linear and non-linear associations between age and mean diffusivity along 
tracts, generalized additive models (GAM) were fitted using the mgcv package (version 1.8.39) 
in R 4.1.292–96. Separate GAMs were fit for each node within each tract, with mean diffusivity as 
the dependent variable, age as a smooth term, and sex and in-scanner motion as linear covariates. 
As in previous work4,49, age was modeled using unpenalized thin plate regression splines as the 
smooth term basis, with a maximum basis complexity (k) of 3 to avoid overfitting, as model fits 
were generally not complex and required a smaller number of knots. The age spline represents 
the developmental fit of mean diffusivity for each node. For each node-wise GAM, we computed 
several developmental measures. The magnitude of the age effect was quantified by the absolute 
difference in adjusted R2 (ΔR2

adj) between a full model and reduced model with no age term. The 
significance of the association between the mean diffusivity and age was assessed using analysis 
of variance (ANOVA) to compare the full and reduced models. Multiple comparisons were 
controlled for with false discovery rate (FDR) correction; Q<0.05. To determine age-specific 
rates of developmental change for each node, we used the ‘derivatives’ function in the gratia 
package (version 0.7.0). We computed the first derivative of the node-wise age smooth function 
using finite differences and calculated a simultaneous 95% confidence interval for the first 
derivative. Under the assumption that mean diffusivity decreases monotonically in this age 
window, the age of maturation was characterized as the first age at which this interval included 
zero, indicating that the rate of developmental change became non-significant. If no such age 
was identified, suggesting that the node matured beyond the window studied, the age of 
maturation for the node was set to the maximal age in the sample (for example, 23 years old for 
PNC). Of note, because deep tract regions exhibit very small magnitudes of age-related change, 
the age of maturation is not directly comparable to that of superficial tract regions, which 
demonstrated substantially larger developmental effects. Lastly, to examine change in mean 
diffusivity over age, we generated fitted values of mean diffusivity from the GAM at 200 
timepoints between the minimum and maximum age of each study using the ‘fitted_values’ 
function in the gratia package. 
 
Correspondence of along-tract developmental effects to a deep-to-superficial axis 

To evaluate whether age effects were enriched in superficial tract regions compared to 
deep regions of each tract, we adapted recently developed tools for network enrichment 
significance testing (NEST)97 for highly spatially autocorrelated tract profile data. Of note, 
“superficial” does not refer to U-fibers, but rather distal regions along long-range WM tracts 
adjacent to the cortex. NEST creates a null distribution by permuting participant age while 
keeping brain data and other covariates fixed, preserving spatial structure in the data and 
controlling for Type I error rates. Using NEST, the age effect (ΔR2

adj) was computed for deep 
(nodes 46-55) and superficial (nodes 5-9 and 90-94) tract regions, using a bin size of 5 nodes. To 
ensure robustness of our results to alternate specifications, we tested additional bin sizes (3, 7, 
and 10 nodes) for defining deep and superficial tract regions and found that bin size minimally 
influenced statistical significance (Supplementary Table 2). NEST first ranked age effect 
magnitudes of each tract region, and then calculated an enrichment score to assess whether age 
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effects were enriched in superficial versus deep tract regions. The observed enrichment score 
was compared against the null distribution generated by 10,000 permutations of age to compute a 
conservative, permutation-based p-value that accounts for the high degree of spatial 
autocorrelation along tracts. 
 
Characterizing superficial tract region development 
Tract to cortex mapping 

We developed a novel workflow that allowed us to map tracts to their respective cortical 
endpoints by combining toolkits (e.g., pyAFQ, MRTrix, FSL, Freesurfer, Nilearn, sMRIPrep, and 
Connectome Workbench). This workflow overcame technical challenges of integrating data from 
different imaging modalities and registering cortical surfaces to volumetric white matter tracts 
while maximizing accuracy in defining cortical endpoints. With the resulting tract-to-cortex 
maps, we could relate WM development to each tract’s cortical endpoints.  

To create tract-to-cortex probability maps for each dataset, we first transformed each 
subject's FreeSurfer white matter surface to native AC-PC alignment to match the space of the 
subject's QSIPrep T1-weighted image using FSL 6.0.4 and sMRIPrep 0.12.2. Next, we identified 
cortical endpoints for each tract. We binarized subject-level tract density images (TDIs) for each 
tract using ‘tckmap’ from MRTrix 3.0.4, creating maps that indicate whether a given tract was 
present or absent in each white matter voxel. Using the ‘vol_to_surf’ function in Nilearn 0.10.3, 
we sampled binarized TDI values 1.5 millimeters below the gray matter/white matter boundary, 
as defined by the FreeSurfer white matter surface. This depth was chosen by first sampling 
different depths below the gray matter/white matter boundary in the discovery dataset, PNC (0.5, 
1, 1.5, and 2 mm). Using tissue probability maps generated by QSIPrep, we then determined that 
a depth of 1.5 mm yielded the lowest probability of sampling gray matter and the highest 
probability of sampling white matter. A greater depth of 2 mm sampled into the opposite cortical 
ribbon, whereas smaller depths may not have reached deep enough into white matter. 
Subject-level surface maps of binarized TDI values were mapped to the fsLR surface using 
Connectome Workbench 1.4.2. These binarized fsLR surfaces were then averaged across 
subjects to create tract-to-cortex probability maps for each tract. These maps were then 
parcellated using the HCP-MMP atlas. For each dataset, each tract-specific map represents the 
proportion of participants with a tract termination at each HCP-MMP region. Cortical regions 
where at least 30% of subjects exhibited a non-zero TDI value were defined as cortical endpoints 
for most tracts. This threshold was selected to maximize accuracy of cortical endpoints based on 
known anatomy of tracts (Supplementary Figure 9). For the inferior fronto-occipital fasciculus 
(IFOF), a 10% threshold was applied due to technical challenges in tract segmentation with 
anatomically-constrained tractography. Specifically, the IFOF must traverse a narrow bottleneck 
in the temporal cortex, making successful segmentation more challenging.  
 
Characterizing superficial tract region development 
 To investigate how developmental patterns of superficial tract regions correspond to a 
tract’s cortical endpoints, we mapped developmental measures to each tract’s endpoints. The 
developmental measures at the five most superficial nodes that were retained (nodes 5–9 and 
90–94; as noted above, nodes -4 and 95-99 were removed in our analyses to mitigate partial 
volume effects) were averaged. We then plotted the averaged developmental measures on the 
cortical surface at the respective cortical endpoints for each tract. Mean diffusivity 
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developmental trajectories for each endpoint were computed by averaging the fitted values for 
the five most superficial nodes on each end.  

We then assessed whether age effects significantly differed between homotopic endpoints 
of a tract within the corpus callosum, specifically the motor segment of the corpus callosum 
(callosum motor). We also examined whether age effects differed between endpoints of a 
long-range white matter tract that connects heterotopic regions – the IFOF. Mean diffusivity age 
effects, as characterized by ΔR2

adj, were computed for the five most superficial nodes and an 
enrichment score was calculated. For callosum motor, the five most superficial nodes in the right 
hemisphere were compared to their counterparts in the left hemisphere. For the IFOF, we 
compared the five superficial nodes adjacent to the bilateral frontal endpoints to the five nodes 
adjacent to the bilateral occipital endpoints. To evaluate if associations between age and mean 
diffusivity were enriched in one cortical endpoint compared to the other, we used NEST as 
described previously. 

 
Correspondence of developmental patterns of superficial tract regions to the cortical hierarchy  

We sought to determine if development of superficial tract regions aligned with the 
cortical hierarchy as defined by the sensorimotor-association (S-A) axis. Cortical endpoints for 
each tract were thus mapped to the S-A axis of cortical hierarchy3. The S-A axis spans from 
unimodal sensorimotor cortices to transmodal association cortices and was derived by averaging 
multimodal brain maps, including anatomical hierarchy quantified by T1w/T2w ratio98, 
functional hierarchy99, evolutionary hierarchy100, allometric scaling101, aerobic glycolysis102, 
cerebral blood flow103, gene expression104, first principal component of NeuroSynth terms105, 
externopyramidization106, and cortical thickness3. The rank ordering of HCP-MMP regions along 
the S-A axis (https://github.com/PennLINC/S-A_ArchetypalAxis) was used for this study. 
Cortical regions included in each tract’s endpoints were assigned HCP-MMP parcellated S-A 
axis ranks and were averaged for each end. This process yielded two mean S-A ranks per tract, 
one for each endpoint. 

Correspondence to the S-A axis was first examined at the tract-level. Pearson correlations 
quantified the association between the ages of maturation for each cortical endpoint and the 
mean S-A axis rank of that endpoint’s constituent cortical regions. We tested for statistical 
significance using spin-based spatial permutation tests, or “spin tests”, which mitigate 
distance-dependent spatial autocorrelation in cortical maps.107 The spin test generates a null 
distribution by rotating spherical projections of one cortical feature map and computes a p-value 
(pspin) by comparing the empirically observed test statistic to the null. We adapted the 
‘rotate_parcellation’ algorithm (https://github.com/frantisekvasa/rotate_parcellation)108 for 
tract-level endpoint data by spinning the S-A axis 10,000 times and recomputing an average spun 
S-A axis rank for each cortical endpoint. Of note, several cortical endpoints did not mature 
within the studied age window, resulting in a ceiling effect for ages of maturation. To address 
this issue, we supplemented our analyses by computing the Pearson correlation coefficients 
between average S-A rank and the age of maturation of endpoints that matured within the age 
range studied. Additionally, we used a two-sample, one-tailed t-test to investigate whether the 
S-A rank of still-developing endpoints was significantly greater than matured endpoints. We 
assessed statistical significance of this comparison using spin tests, as described above, with the 
t-value as the test statistic.  
 Next, we interrogated whether cortical endpoints at opposite ends of the cortical 
hierarchy show greater differences in age of maturation for each tract. We calculated two 
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measures for each tract: the difference in age of maturation (ΔAge) and the difference in average 
S-A rank (ΔS-A rank). Given that one group of tracts exhibited relatively small ΔS-A rank and a 
second group exhibited large differences, we divided tracts into two groups (large and small 
ΔS-A rank) and implemented a one-tailed t-test to quantify whether the ΔAge was greater in 
tracts with large ΔS-A rank. Statistical significance was evaluated using a modified spin test in 
which differences in age of maturation were computed on spun age of maturation maps, and a 
null distribution of t-values was generated by conducting t-tests on null ΔAge values. The age of 
maturation maps used for the null distribution were created through the following steps. For each 
dataset, we aggregated the ages of maturation for superficial tract regions across all tracts and 
assigned the average age of maturation to the nearest cortical endpoint. This process yielded an 
average age of maturation map across all superficial tract regions for each dataset, with each 
HCP-MMP region that had a tract termination being assigned an average value. Of note, we 
utilized all endpoints, including ones that did not fully mature in the age window, to retain 
enough data points for this analysis.  

Lastly, using the across-tract age of maturation maps described above for each dataset, 
Pearson correlations quantified the association between the aggregated age of maturation map 
and the S-A axis of each HCP-MMP region. To address ceiling effects caused by endpoints 
maturing beyond the studied age window, we repeated this analysis using Pearson correlation 
coefficients to evaluate the association between the age of maturation of matured regions and the 
S-A axis. We additionally performed a two-sample, one-tailed t-test to determine whether the 
S-A ranks of still-developing regions were significantly greater than those of matured regions. 
Statistical significance for these analyses was determined using spin tests.  
  
DATA AVAILABILITY 

This paper analyzes publicly available data from three datasets: the Philadelphia 
Neurodevelopmental Cohort, accessible from the Database of Genotypes and Phenotypes 
(phs000607.v3.p2) at 
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CODE AVAILABILITY 
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