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ABSTRACT
BACKGROUND: Symptoms of borderline personality disorder (BPD) often manifest during adolescence, but the
underlying relationship between these debilitating symptoms and the development of functional brain networks is not
well understood. Here, we aimed to investigate how multivariate patterns of functional connectivity are associated
with borderline personality traits in large samples of young adults and adolescents.
METHODS:We used functional magnetic resonance imaging data from young adults and adolescents from the HCP-
YA (Human Connectome Project Young Adult) (n = 870, ages 22–37 years, 457 female) and the HCP-D (Human
Connectome Project Development) (n = 223, ages 16–21 years, 121 female). A previously validated BPD proxy
score was derived from the NEO Five-Factor Inventory. A ridge regression model with cross-validation and nested
hyperparameter tuning was trained and tested in HCP-YA to predict BPD scores in unseen data from regional
functional connectivity. The trained model was further tested on data from HCP-D without further tuning. Finally,
we tested how the connectivity patterns associated with BPD aligned with age-related changes in connectivity.
RESULTS: Multivariate functional connectivity patterns significantly predicted out-of-sample BPD scores in unseen
data in young adults (HCP-YA ppermuted = .001) and older adolescents (HCP-D ppermuted = .001). Regional predictive
capacity was heterogeneous; the most predictive regions were found in functional systems relevant for emotion
regulation and executive function, including the ventral attention network. Finally, regional functional connectivity
patterns that predicted BPD scores aligned with those associated with development in youth.
CONCLUSIONS: Individual differences in functional connectivity in developmentally sensitive regions are associated
with borderline personality traits.

https://doi.org/10.1016/j.biopsych.2024.02.1016
Borderline personality disorder (BPD) is a major mental illness
that affects 0.7% to 2.7% of adults in the United States (1).
Individuals diagnosed with BPD experience sudden shifts in
mood and struggle to maintain stable interpersonal relation-
ships. BPD is also characterized by impulsivity, suicidality,
self-harm, feelings of emptiness, intense anxiety and stress,
and dissociative symptoms (1,2). BPD is also associated with
high rates of death by suicide (4%) compared with other
forms of mental illness (1,3–5). BPD and other personality
disorders are typically diagnosed in adulthood, but recog-
nizable symptoms often manifest during adolescence (6).
Despite their significance, BPD is typically not studied in
youth samples, and the relevant underlying developmental
neurobiology remains underexplored. Addressing this gap in
knowledge is of particular importance given that other major
mental illnesses that emerge during adolescence or young
adulthood are increasingly understood as disorders of brain
development (7).

Previous studies have investigated the link between BPD
and brain function and structure using magnetic resonance
imaging (MRI) (3,5,8,9) but have yielded inconsistent findings.
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Studies that have used resting-state functional MRI (fMRI) have
reported altered functional connectivity in patients with BPD
compared with healthy control participants in networks asso-
ciated with emotional processing and executive control
(8,10,11). Altered functional connectivity has been reported in
frontomedial, frontotemporal, and limbic regions (12,13); the
frontoparietal network (10,14); the default mode network [e.g.,
posterior cingulate and precuneus (10,13,15)]; and the salience
network [e.g., insula and anterior cingulate cortex (10,12–14)].
More generally, a theoretical perspective on the involvement of
frontolimbic circuits in BPD suggests that deficits in the
inhibitory function of these regions on circuits associated with
social cognition and self-regulation result in emotional dysre-
gulation and behavioral dyscontrol in BPD (16,17). Although
functional alterations in these regions may partially explain the
disruptions in emotion and regulatory control processes (e.g.,
impulsivity) common in BPD, some studies have reported no
significant differences in neuroimaging data between patients
and healthy control participants (18,19). These inconsistencies
may be due in part to the heterogeneity in BPD populations.
However, interacting methodological factors—in particular,
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small sample sizes—may also be the source of such dis-
crepancies (20).

Previous neuroimaging studies of BPD have mainly used
case-control designs with small samples of patients with
diagnosed BPD. While such designs can be extremely valuable
and are ultimately essential for clinical translation, the small
size of most case-control studies inevitably reduces the
replicability and generalizability of the results. There is growing
evidence that large samples, multivariate models, and out-of-
sample testing on unseen data are critical to identifying repli-
cable and generalizable brain-behavior associations (20–22).
As suggested in part by the Research Domain Criteria (7) and
Hierarchical Taxonomy of Psychopathology (23) frameworks,
one alternative to small case-control designs in psychiatry is
dimensional studies of a clinically relevant construct in larger
samples. This perspective is consistent with overwhelming
evidence that BPD symptoms vary dimensionally, with
functional impairment scaling with symptom severity (23–27).
Although dimensional self-report measures of BPD have
been developed (28), substantial evidence also supports
mapping between personality trait measures and personality
disorder constructs (29). Another related caveat in neuro-
imaging studies of BPD is that dimensional and categorical
measures of BPD have usually been assessed only in studies
of BPD conducted in small samples of adults; they have not
been included in large-scale neuroimaging studies. Few et al.
(30) recently developed and validated a measure of BPD
derived from self-reported personality traits on the NEO Five-
Factor Inventory (NEO-FFI), which has been collected widely
in larger population surveys and clinical samples. The use of
such a proxy measure allows the field to leverage existing
large-scale data resources with high-quality neuroimaging
data to study BPD, given that the NEO-FFI is available in
most large-scale datasets (19).

Here, we aimed to investigate how multivariate functional
connectivity patterns are related to borderline personality traits
in young adults and adolescents using large-scale publicly
available datasets. Specifically, we used fMRI data from 2 large
public datasets to characterize functional connectivity in large
samples of adolescents and young adults. Then, we used
machine learning with rigorous cross-validation to predict
borderline personality traits in unseen data from regional pat-
terns of functional connectivity. Finally, to contextualize these
results in a developmental framework, we evaluated whether
the connectivity patterns that best predicted borderline per-
sonality traits aligned with age-related changes of functional
connectivity in youth.
METHODS AND MATERIALS

We used functional connectivity from 2 large-scale, publicly
available datasets—HCP-YA [Human Connectome Project
Young Adult (31)] and HCP-D [Human Connectome Project
Development (32)]—to predict individual differences in
borderline personality traits estimated by a trait-based BPD
proxy score. We note that here the term “predict” refers to a
contemporaneous association between BPD and functional
connectivity in unseen data rather than prospective prediction
of BPD. To investigate the link between functional connectivity
and BPD scores in the HCP-YA, a multivariate linear ridge
2 Biological Psychiatry - -, 2024; -:-–- www.sobp.org/journal
regression model was first trained for each brain region that
predicted participants’ BPD scores (i.e., dependent variable)
from multivariate functional connectivity patterns (i.e., inde-
pendent predictor) and then was tested on unseen data using
cross-validation. As a strong test of the generalizability of our
model, we applied a fully trained model from HCP-YA to HCP-
D without further training, testing the model on unseen data
(i.e., HCP-D was not part of the training). Finally, we assessed
the degree to which connectivity patterns that best predicted
BPD corresponded to connectivity patterns that displayed the
greatest developmental effects in HCP-D.

Participants

Resting-state and task fMRI data from healthy young adults
were obtained from HCP-YA (31) (n = 870, ages 22–37 years,
457 female) and from adolescents from HCP-D 2.0 Release
(32) (n = 610, ages 5.6–21.9 years, 331 female). Details
regarding the scanners, image acquisition protocols, and im-
age processing are included in the Supplement. Preprocessed
fMRI time series were parcellated into 400 cortical regions
using the Schaefer-400 atlas for the main analysis (33). We
also performed sensitivity analyses using another parcellation
(Schaefer-200) and subcortex-to-cortex functional connectiv-
ity (see the Supplement for details).

Assessment of Borderline Personality Traits

Targeted measures of BPD are usually administered only in
focal studies of BPD in adults and are not available in large-
scale neuroimaging studies of youths. To obtain a proxy
measure of borderline personality traits in HCP-YA and HCP-
D, we used a previously validated proxy measure of BPD (30)
that has been used to investigate borderline personality traits
in large imaging datasets such as HCP-YA (19). This proxy
measure estimates BPD scores using 24 items from a widely
used personality assessment instrument, the NEO-FFI. Few
et al. (30) developed and validated this trait-based BPD proxy
score across multiple datasets, comparing the BPD score with
explicit measures of BPD in both clinical BPD samples and the
broader population. Given that the NEO-FFI is available in most
large-scale datasets, it provides a useful and scalable route to
study BPD-relevant symptoms in large-scale datasets. We
used the NEO-FFI instrument to estimate a BPD score for each
participant in HCP-YA and HCP-D, as previously described
(30) (see Table S1 and the Supplement for more details). Note
that the NEO-FFI was available for all participants in HCP-YA,
whereas it was only available for participants over age 16 in
HCP-D (n = 223, 121 female).

Multivariate Analyses

Previous work has shown that identifying reliable and gener-
alizable brain-behavior associations requires out-of-sample
testing and that reliability is enhanced by multivariate anal-
ysis approaches (20,21). Accordingly, here we used a machine
learning approach to predict BPD proxy scores from multi-
variate regional functional connectivity patterns. Detailed
description of the analysis is included in the Supplement.
Briefly, we used linear ridge regression modeling as imple-
mented in Scikit-Learn (34). We trained a separate model for
each brain region, predicting each participant’s BPD score
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from the region’s functional connectivity profile in HCP-YA (i.e.,
all connections between a given region and all other regions).
Therefore, the dependent variable was the participant’s BPD
score, and the independent predictor was a row of their
functional connectivity matrix (Figure 1). The models were
tested on unseen data from the same cohort using cross-
validation. This analysis estimated the association between
the BPD score and the functional connectivity profile of each
brain region. As described in the Supplement, all models
included covariates of age, sex, and in-scanner motion (mean
framewise displacement).

Given that multivariate analysis together with large
samples and out-of-sample testing are essential for
generalizable studies of brain-behavior associations, we
next aimed to directly evaluate the generalizability of our
approach. We selected HCP-D data because it is a large
dataset with a younger age range and was acquired using
different sequences and at different scanning sites, which
makes it a good candidate to test the generalizability of our
model. We used all data from HCP-YA to train regional ridge
regression models and applied the trained models to the
completely unseen HCP-D data without any additional
tuning.

Code and Data Availability

Data used in the current study were obtained from publicly
available HCP-YA and HCP-D datasets (31,32). Code used to
conduct the analyses is available on GitHub (https://github.
com/PennLINC/borderline).

RESULTS

BPD Score Distribution

Following the approach proposed by Few et al. (30), the BPD
proxy score was estimated from 24 NEO-FFI items in young
adults (HCP-YA: mean [SD] = 0.90 [0.39]) and adolescents
(HCP-D: mean [SD] = 1.17 [0.43]). We also estimated the in-
ternal consistency of the included items using Cronbach’s a
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reliability measure (35). Cronbach’s a ranges between 0 and 1,
and a value above 0.7 is considered acceptable (acceptable:
0.8 . a . 0.7; good: 0.9 . a . 0.8; excellent: a . 0.9). Both
datasets had acceptable to good a values (HCP-YA: a = 0.79;
HCP-D: a = 0.80). Summary measures from BPD score dis-
tributions and sample descriptions are included in Table 1. The
BPD score distribution and a values in both samples were
comparable to the values reported by Few et al. (30) in college
students (sample 1: a = 0.78, BPD score mean [SD] = 1.76
[0.44]; sample 2: a = 0.73, BPD score mean [SD] = 1.83 [0.43])
and a general population of young adults (a = 0.81, BPD score
mean [SD] = 1.52 [0.43]).
Functional Connectivity Predicts Borderline
Personality Traits

We used a multivariate linear ridge regression model to
predict BPD proxy scores from regional functional connec-
tivity profiles (i.e., functional connections between a given
brain region and all other regions) (Figure 1). Regional models
were initially trained on the data from young adults (HCP-YA)
and tested on unseen data from the same cohort using
cross-validation. We found that multivariate functional con-
nectivity patterns significantly predicted BPD scores (r =
0.14, ppermuted = .001) (Figure 2A). For comparison, the
group-level model performance was assessed using a global
linear ridge regression model where the model was trained and
tested using the full upper triangle of functional connectivity data
and identified consistent results (r = 0.10, ppermuted = .002)
(Figure S1A). To ensure that the findings were independent from
total brain connectivity, we directly correlated whole-brain mean
connectivity with the BPD score and found no relationship be-
tween the two (r = 0.07). These findings demonstrate that multi-
variate functional connectivity patterns are linked to borderline
personality traits in young adults. We found that there was sub-
stantial heterogeneity in how regional functional connectivity
profiles predicted BPD scores (Figure 2B; see regional maps
thresholded based on permutation tests in Figure S2). To
region
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Table 1. BPD Score Distribution

HCP-YA, n = 870 HCP-D With NEO-FFI, n = 223 HCP-D, Full Sample, n = 610

Age, Years, Mean (SD) [Range] 28.6 (3.7) [22.0 to 27.0] 19.0 (1.8) [16.0 to 21.9] 14.6 (4.0) [5.6 to 21.9]

Sex, Female/Male, n 457/413 121/102 331/279

BPD Score, Mean (SD) [Range] 0.90 (0.39) [20.17 to 2.30] 1.17 (0.43) [0 to 2.75] NA

Reliability Coefficient, Cronbach’s a (95% CI) 0.79 (0.77 to 0.81) 0.80 (0.78 to 0.82) NA

Sample descriptions and BPD score distributions are provided. Note that the BPD proxy score was only estimated for a subset of individuals in HCP-D because the NEO
Five-Factor Inventory questionnaire was only available for individuals over age 16. Internal consistency was estimated using Cronbach’s a.

BPD, borderline personality disorder; HCP-D, Human Connectome Project Development; HCP-YA, Human Connectome Project Young Adult; NA, not applicable.
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investigate whether the regional prediction accuracy was more
pronounced in specific functional systems, we estimated the
average prediction accuracy for the 7 intrinsic networks defined
by Yeo et al. (36) (Figure 2C). We found that prediction accuracy
was highest for frontoparietal (false discovery rate–corrected
pspin = .021) and ventral attention (false discovery rate–
corrected pspin = .007) networks, which suggests a link be-
tween borderline personality traits and systems involved in
emotion regulation and executive function.
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Figure 2. Functional connectivity predicts borderline personality disorder (BPD
models were used to predict BPD proxy scores from multivariate functional con
Connectome Project Young Adult) data and (D–F) adolescents from the HCP-D (H
assessed as the Pearson correlation coefficient r between the empirical and predi
demonstrating the relationship between the empirical and average BPD scores ac
95% CI, 0.12–0.37). Each point in the scatterplot represents a participant. The
distribution of accuracies (blue distribution) obtained from 1000 permutation tes
mance is depicted across the cortex for both cohorts (Schaefer-400 atlas; 99% C
Finally, the average functional system-level prediction accuracy was estimated
denotes significant system-level prediction accuracy based on 10,000 spatial a
pspin , .05). Significant system-level accuracy was observed in frontoparietal
.007) networks for HCP-YA and in the ventral attention network (FDR-corrected
network; fp, frontoparietal network; lim, limbic network; sm, somatomotor netwo
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Borderline Personality Traits Are Linked to
Functional Connectivity in Adolescents

To examine whether the link between functional connectivity
and the BPD score identified in early adulthood generalized to
late adolescence, we used the previously trained regional
models from HCP-YA to predict BPD scores in HCP-D without
further tuning. Note that the regional models were trained on
HCP-YA data only, and the trained models were applied to
HCP-D; as such, the HCP-D data were completely unseen by
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) scores in young adults and adolescents. Regional linear ridge regression
nectivity patterns in (A–C) healthy young adults from the HCP-YA (Human
uman Connectome Project Development) data. The model performance was
cted scores. Participant-level model performance is depicted as scatterplots
ross regional models (HCP-YA: r = 0.14; 95% CI, 0.08–0.21; HCP-D: r = 0.24;
participant-level accuracy r (red vertical line) is then compared with a null
ts, randomly shuffling the samples. Regional out-of-sample model perfor-
Is) (see regional maps thresholded based on permutation tests in Figure S2).
for the 7 intrinsic functional networks defined by Yeo et al. (32). Asterisk
utocorrelation-preserving null models (false discovery rate [FDR]–corrected
(FDR-corrected pspin = .021) and ventral attention (FDR-corrected pspin =
pspin = .0001) for HCP-D. da, dorsal attention network; dmn, default mode
rk; va, ventral attention network; vis, visual network.
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the models and therefore assessed the true out-of-sample
generalizability of the model. Consistent with the findings in
young adults, we found that regional functional connectivity
significantly predicted BPD scores in adolescents (r = 0.24,
ppermuted = .001) (Figure 2D). The fact that the model con-
structed in young adults significantly predicted the BPD score
in an unseen sample of older adolescents suggests that con-
nectivity patterns are generalizably linked to borderline per-
sonality traits across ages and multiple datasets. Regional
patterns showed similar heterogeneity to that in the adult data
(Figure 2E; see correspondence between regional accuracies
across samples in Figure S3), with the highest prediction ac-
curacy being observed in the ventral attention network (false
discovery rate–corrected pspin = .0001) (Figure 2F). For com-
parison, the group-level model performance with the global
linear ridge regression model is shown in Figure S1B (r = 0.15,
ppermuted = .026). Consistent with the young adult analysis,
whole-brain mean connectivity was not associated with the
BPD score in the developmental sample (r = 0.013). Taken
together, these results suggest that individual differences in
systems important for emotion regulation and executive
function are linked to borderline personality traits in both young
adults and adolescents.
Regions That Predict Borderline Personality Traits
Display Developmental Effects

We sought to situate our findings in the context of brain
development. Specifically, we evaluated whether the regions
most strongly linked to the BPD score were also those that
displayed age-related changes in connectivity during devel-
opment. To quantify the developmental effects in functional
networks, we used regional functional connectivity to predict
the age of unseen HCP-D participants (see the Supplement for
details). We found that functional connectivity was associated
with age but that prediction accuracy varied significantly
across the cortex (Figure 3A). To directly examine whether
these age-related changes in connectivity aligned with regions
associated with the BPD score, we compared the cortical
distributions of age prediction accuracy and BPD score pre-
diction accuracy in the developmental sample (Figure 3B).
Permutation testing with spatial autocorrelation-preserving
nulls (i.e., spin tests) revealed a significant association be-
tween cortical distribution of age and BPD score prediction
accuracy (r = 0.20, pspin = .001) (Figure 3B). To ensure that the
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age p
0.30.2

bp
d 

sc
or

e 
pr

ed
ic

tio
n 

(r)

-0.05

0.05

0.15

0.25

r = 0.20, pspin

accuracy (r)
0.25-0.09

bpd score prediction

accuracy (r)
0.570.24

age prediction

B

findings were not driven by the relationship between BPD
score and age, we directly correlated the BPD score with
participant age and found no associations between the two
(HCP-D: r = 20.06). This finding suggests that regions asso-
ciated with borderline personality traits are also those that
undergo greater age-related changes in functional connectivity
in youth.
Sensitivity Analysis Provides Convergent Results

To evaluate whether our findings were affected by specific
analytical choices, we performed multiple sensitivity analyses.
First, we repeated the analyses using functional connectivity
from resting-state fMRI data only (rather than the original
concatenated task- and rest-fMRI scans) to predict BPD
scores in HCP-YA and HCP-D and found consistent results in
both samples (Figure S4). Second, to ensure that the findings
were robust to parcellation resolution, we repeated the ana-
lyses with a different parcellation resolution (200 rather than
400 regions). Results were consistent for both HCP-YA and
HCP-D (Figure S5). Third, we examined the predictive capacity
of functional connectivity from subcortical to cortical regions.
We trained a linear regression model for each subcortical re-
gion and tested the models on unseen data as previously
described. Consistent with cortico-cortical connectivity anal-
ysis, connectivity between subcortical and cortical regions
significantly predicted the BPD score in HCP-YA and HCP-D
(Figure S6). Hippocampal structures were among the regions
that contributed substantially to the prediction accuracy in
both samples. Fourth, to assess the specificity of the model to
borderline personality traits, we included a measure of general
psychopathology (i.e., the Achenbach Adult Self-Report total
problems score) as a covariate in the model and repeated the
analyses (see the Supplement for details). The results were
consistent in both samples (Figure S7), confirming that the
model went beyond predicting general psychopathology. Fifth,
we assessed whether the findings were influenced by total
brain volume. We found that results were consistent with the
original findings in both samples when total brain volume was
included as a covariate in the models (Figure S8). Finally, to
verify that the findings were not influenced by scanning site
differences in HCP-D, we used CovBat-GAM (37–40) to
harmonize functional connectivity data across sites and
repeated the analyses with harmonized data. The results were
consistent with the original findings (Figure S9). These
core prediction

rediction (r)
0.5 0.60.4

 = 0.001

Figure 3. Regional predictive capacity aligns with
developmental changes in functional connectivity.
(A) Regional functional connectivity profiles were
used to predict participants’ ages in the develop-
mental sample (HCP-D [Human Connectome Project
Development]). The age prediction accuracy r is
depicted across the cortex along with the previously
obtained borderline personality disorder (BPD) proxy
score prediction accuracy (Schaefer-400 atlas; 99%
CIs). (B) Topographic patterns of BPD score pre-
diction and age prediction were compared using the
Pearson correlation coefficient r and 10,000 spatial
autocorrelation-preserving null models (i.e., spin
tests). Each point in the scatterplot corresponds to a
brain region.
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sensitivity analyses—combined with the generalizability of re-
sults across samples—bolster confidence in the reported
findings.
DISCUSSION

To our knowledge, this is the largest functional neuroimaging
study of borderline personality traits in adolescence and young
adulthood reported to date. We found 3 main results. First,
functional connectivity significantly predicted BPD scores in
large samples of young adults (HCP-YA) and adolescents
(HCP-D). Second, the predictive capacity was heterogeneous
across the cortex, where the most predictive regions were
found in functional systems relevant for emotion regulation and
executive function. Finally, we found that regions associated
with borderline personality traits colocalized with regions with
prominent age-related changes in connectivity in youth.

Previous studies have sought to associate BPD with diverse
functional and structural neuroimaging markers (3,8). Findings
from previous studies have varied considerably, and to date,
there is no consensus regarding how differences in brain
function are linked to BPD. However, one relatively consistent
finding across studies is the presence of altered structural and
functional patterns in frontolimbic networks implicated in
emotion regulation and cognitive control (8,10–14,41). One
likely cause of the heterogeneity in the existing literature is the
relatively small samples studied, hampering efforts to identify
reliable and replicable neurobiological signatures of BPD (3).

Such challenges are hardly unique to BPD research; iden-
tifying reliable, replicable, and generalizable neuroimaging
indices of psychopathology remains a major ongoing chal-
lenge (20,22). Recent evidence suggests that large samples,
out-of-sample testing, and multivariate methods are essential
to investigating brain-behavior associations (20–22). Out-of-
sample testing using rigorous cross-validation along with an-
alyses that assess the generalization of results to new, unseen
datasets collected under different conditions are required to
properly assess brain-behavior relationships. Fortunately,
collaborative efforts in collecting and sharing human neuro-
imaging data with large sample sizes have provided an un-
precedented opportunity to examine the brain-behavior
association in a systematic and comprehensive manner.
Although there has been a growing number of large-scale
publicly available datasets in healthy populations and clinical
cohorts [e.g., ADNI (Alzheimer’s Disease Neuroimaging Initia-
tive) for Alzheimer’s disease (42), PPMI (Parkinson Progression
Marker Initiative) for Parkinson’s disease (43), and the ENIGMA
(Enhancing Neuro Imaging Genetics through Meta Analysis)
consortium for various disorders (44)], most neuroimaging
studies that are focused on neuropsychiatric disorders have
small sample sizes. An alternative approach suggested in part
by the Research Domain Criteria initiative and the Hierarchical
Taxonomy of Psychopathology system is to investigate
dimensional variations of clinically relevant measures in larger
nonclinical samples such as the HCP (7,23).

We used a personality trait–based measure to estimate BPD
proxy scores in large samples of healthy young adults and
adolescents, leveraging publicly available datasets to study
the link between brain function and borderline personality
traits. One recent study used a similar approach to investigate
6 Biological Psychiatry - -, 2024; -:-–- www.sobp.org/journal
the link between structural neuroimaging markers from T1-
weighted MRI data and BPD (19). However, the study identi-
fied no associations between BPD and the structural markers,
including cortical thickness, surface area, and subcortical
volumes (19). Considered together with our findings, this is
consistent with the recent evidence indicating that functional
brain organization may provide a more sensitive tool than
anatomical markers for capturing brain-behavior relationships
in some settings (20). Here, we investigated the link between
multivariate functional connectivity patterns and borderline
personality traits in adolescence and young adulthood. Our
findings demonstrated that functional connectivity was asso-
ciated with BPD scores in both samples. Consistent with some
previous reports, the link between functional connectivity and
borderline personality traits was more prominent in certain
functional systems, such as the ventral attention (overlapping
with the insular cortex and the salience network) and the
frontoparietal networks (11,41). These functional networks are
associated with emotion regulation, executive function, and
top-down control. In particular, the ventral attention network
was robustly associated with borderline personality traits in
both adults and adolescents and across the sensitivity ana-
lyses. This network is associated with emotional response and
emotion dysregulation, and its functional activity gets modu-
lated by emotionally relevant stimuli (45,46). Moreover, struc-
tural volumetric changes have been previously reported in
salience regions across multiple psychiatric diagnosis (47),
which may also affect the functional integrity of those regions.
An important contribution of the ventral attention and fronto-
parietal networks to the link between brain function and
borderline personality traits may be linked to impairments in
emotion regulation and impulse control that have been re-
ported in patients with BPD (1).

Notably, we found that the link between functional con-
nectivity and the BPD score was generalizable across datasets
of young adults and adolescents collected at different sites.
This finding indicates that although BPD is usually not diag-
nosed before the age of 18 years (2), individual differences in
functional networks linked to BPD may be present earlier in
development. This possibility is particularly relevant given the
finding that brain regions that undergo the most functional
maturation during development are the ones that contribute
the most to the link between functional connectivity and
borderline personality traits. Taken together, these findings
suggest that, like many other major neuropsychiatric condi-
tions (7,48), BPD may be understood in part as a disorder of
neurodevelopment. Examining BPD from a neuro-
developmental perspective may accelerate efforts to identify
markers of risk for BPD earlier in life and develop personalized
interventions before negative outcomes of this disabling dis-
order accrue. More generally, studying BPD from a neuro-
developmental perspective may provide insight into
neurobiological and environmental correlates of BPD. For
example, exposure to adverse experiences in childhood has
been associated with BPD in adulthood (49–51). However,
there is little to no evidence of a causal association between
childhood trauma and BPD, with genetic factors having a
stronger influence on BPD-related symptoms in adulthood
(52–54). Prevailing theories of BPD emphasize the importance
of interactions between a child’s emotionally reactive and
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impulsive temperament and invalidating or coercive trans-
actions with caregivers (55), which may be related to shared
genetic factors.

Findings presented in this work should be considered along
with several methodological caveats. First, the analyses were
not performed in patients diagnosed with BPD. The 2 datasets
used in this study include healthy young adults and typically
developing adolescents. The main objective of this study was
to conduct a large-scale functional imaging study of borderline
personality traits that leverages the large sample sizes of
publicly available datasets. Although we used a trait-based
BPD score that has been previously validated in multiple
datasets including healthy and BPD populations, future work
that applies this approach to individuals diagnosed with BPD
(or individuals with greater levels of BPD symptomatology)
using targeted BPD measures is required to confirm our find-
ings. Second, the NEO-FFI questionnaire, and hence the BPD
score used here, was only available in older adolescents and
young adults (16 years or older). Using this trait-based BPD
measure made it possible to expand our analysis to older
adolescents, who have generally not been included in previous
studies of BPD. The link between functional brain organization
and borderline personality traits in younger adolescents re-
mains an important area for study given that recognizable
symptoms of BPD often manifest much earlier in life, even as
early as 12 years (1,2). Third, previous reports have suggested
that sex differences influence the expression and diagnosis of
BPD (56,57). Although biological sex was included as a covar-
iate in all the analyses presented in this study, we did not
directly assess how sex differences influenced the findings.
Future research is required to directly investigate the neural
correlates of sex differences in BPD. Fourth, BPD is a hetero-
geneous disorder, and patients with BPD often have comorbid
mental health problems and other psychiatric conditions (1,5).
More work is required to discover the impact of comorbidity
with other mental disorders. Finally, in this study, we aimed to
reliably identify a link between multivariate functional connec-
tivity patterns and BPD using large samples and rigorous out-of-
sample analysis. Future investigations focusing on specific
functional connections and regions of interest are essential to
identify detailed neural substrates of BPD.

Conclusions

In sum, we demonstrated that multivariate functional con-
nectivity patterns can successfully predict borderline person-
ality traits in unseen data from young adults and adolescents.
The findings suggested that regions whose functional con-
nectivity develops the most in youth align with those associ-
ated with BPD, providing new evidence for understanding BPD
as a neurodevelopmental disorder. Linking within-individual
neurodevelopmental trajectories of functional connectivity to
the emergence of BPD is an important direction for future
longitudinal studies. More generally, the current findings sug-
gest a new perspective on potential neurodevelopmental ori-
gins of BPD.
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